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1 Introduction

All-pay auctions have been used to model diverse activities such as political lobbying,
research and development (R&D) races, and tournaments. Recently, these auctions
have been used as a major exchange mechanism in emerging online labor markets,
known as crowdsourcing contests. In these online labor markets, a task is posted by
a requester along with a reward for the best solution, and any user of the website
may submit a solution. The requester subsequently selects the best solution and re-
wards the corresponding user, while other users’ efforts are not compensated for. If
we equate users’ submission quality with bids in an auction, the system is approxi-
mately equivalent to an all-pay auction, especially for an expertise-based task where
a contestant’s performance is mainly determined by ability and effort (Terwiesch and
Xu 2008).

Most relevant literature concerns simultaneous all-pay auctions in which play-
ers bid simultaneously and independently. However, in many real-life applications,
individuals or groups move sequentially instead of simultaneously, and later play-
ers can decide how much effort to expend after observing early players’ behavior.
Examples of sequential contests include patent competition (Leininger 1991), and
the United States presidential election process (Morgan 2003). Moreover, the choice
between sequential and simultaneous all-pay auctions is an open call for contest de-
signers (e.g., crowdsourcing contests), and which mechanism is more effective for
encouraging better performance is currently subject to experimentation. Many web-
sites such as Taskcn.com, implement sequential all-pay auctions where users submit
their solutions sequentially and late entrants observe the contents of prior solutions.
Conversely, websites such as Topcoder.com use simultaneous all-pay auctions that
prevent users from reading other submissions. Sites such as 99design.com allow con-
test holders to choose between these two mechanisms.

Moreover, participants in real-life situations endogenously decide when to enter
a contest, and the bid timing decisions determine the format of the contest. For ex-
ample, the contest becomes simultaneous if all contestants on Taskcn.com choose
to password-protect their solutions, and sequential otherwise. Furthermore, a tie-
breaking rule, which favors early submissions, is often used in practice. Many re-
questers on crowdsourcing contest sites explicitly indicate that, in the case of mul-
tiple best solutions, the earliest submission will be selected.1 The incumbent in a
market also has an advantage against the new entrant because of consumers’ stick-
iness (Giulietti, Price and Waterson 2005, Schlesinger and Von der Schulenburg
1991, Waterson 2003). Therefore, we investigate whether this simple tie-breaking
rule could effectively affect individuals’ bid timing decisions.

In order to do this, we examine individuals’ bid timing decisions in all-pay auc-
tions, in which players first endogenously choose which bidding stage to enter, and
we manipulate the use of different tie-breaking rules. To characterize different com-
petition environments, we vary bidding costs so that players have either identical or
different bidding costs, and compare revenue in all-pay auctions with endogenous
against exogenous bid timing, i.e., exogenous simultaneous all-pay auctions. We find

1 An example is http://www.taskcn.com/w-60017.html, retrieved on October 15, 2011.
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that a tie-breaking rule that favors early bidders significantly induce earlier bids for
homogeneous players but not for heterogeneous ones. The revenue in an endogenous-
entry treatment is either equal to or less than that in an exogenous-entry treatment. In
addition, individuals in simultaneous all-pay auctions do not always bid as predicted
by a risk-neutral model, and a risk- and loss-averse model can better rationalize the
data.

The rest of this paper is organized as follows. In Section 2, we review the relevant
literature. Section 3 presents a theoretical model of all-pay auctions with endoge-
nous bid timing. Section 4 presents the experimental design. In Section 5, we present
experimental results. Section 6 concludes the paper.

2 Literature Review

In all-pay auction literature, most studies explore simultaneous all-pay auctions.2 For
complete information games in which each bidder’s value (or bidding cost) is com-
mon knowledge, Baye, Kovenock and de Vries (1996) provide a complete charac-
terization of the mixed strategy Nash equilibria. Particularly, total bids are expected
to be less than or equal to the value of the object. Using the theory prediction in
Baye et al. (1996), a series of experiments (Davis and Reilly 1998, Gneezy and
Smorodinsky 2006, Lugovskyy, Puzzello and Tucker 2010) report overbidding where
total bids exceed the value of the object. This phenomenon is attributed to various
factors, including (1) the size of the group; (2) individual experiences; and (3) the
matching protocol. In an experimental study with a minimum group size (2 play-
ers), a sufficient learning opportunity (30 rounds), and a random rematching proto-
col, Potters, de Vries and van Winden (1998) find that the average bid is consistent
with the NE prediction. Consistently, no significant over (under) bidding is observed
in Grosskopf, Rentschler and Sarin (2010) which has similar experimental protocol.
Moreover, Potters et al. (1998) report that bidders can be categorized into differ-
ent types. For example, a substantial proportion choose to overweigh strategies with
higher realized payoffs in earlier rounds; consequently, they are more likely to use
the same strategy across rounds instead of randomizing their bids. Additionally, both
Klose and Sheremeta (2012) and Ernst and Thöni (2013) find that the bids exhibit a
bimodal distribution instead of a uniform one, and the reference dependent model,
which incorporates both risk and loss preference, can organize the data.

Numerous studies examine simultaneous all-pay auctions with incomplete infor-
mation. Assuming an i.i.d. distribution of bidder type and risk neutrality, the unique
monotonic symmetric Bayesian NE has been obtained in prior studies (Chawla, Hart-
line and Sivan 2012, Hillman and Riley 1989, Krishna and Morgan 1997, Weber
1985). A few theoretical works consider independent types drawn from different
distributions (Amann and Leininger 1996, Kirkegaard 2012). Other studies exam-
ine interdependent types (Krishna and Morgan 1997, Rentschler and Turocy 2016,
Siegel 2014). For example, under the monotonicity condition, Siegel (2014) analyzes

2 There is extensive literature on lottery contests in which the winning probability is not deterministic
but proportional to the number of bids (Tullock 1980). We refer the reader to Dechenaux, Kovenock and
Sheremeta (2015) for a summary of this literature and the references therein.
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(a)symmetric two-player all-pay auction with finite sets of types. Rentschler and Tur-
ocy (2016) further relax the monotonicity assumption, and characterize all symmet-
ric equilibria. Olszewski and Siegel (2015) apply the mechanisms design approach
to approximate equilibrium behavior and to solve efficient prize allocation in large
contests.

Regarding experimental research, overbidding has also been observed and found
to decrease with experience (Noussair and Silver 2006). Players with a low value
often bid lower than the equilibrium prediction whereas high-value players tend to
bid higher than the equilibrium prediction (Muller and Schotter 2010, Noussair and
Silver 2006), and this can be explained by risk-aversion (Fibich, Gavious and Sela
2006) and (or) loss-aversion (Mermer 2013).

Relative to the extensive literature on simultaneous all-pay auctions, there are few
studies on sequential all-pay auctions. Konrad and Leininger (2007) characterize the
subgame perfect NE in a complete information all-pay auction with endogenous bid
timing. Segev and Sela (2014) derive the perfect Bayesian NE for an exogenously
sequential all-pay auction with incomplete information. Following Segev and Sela
(2014), Jian, Li and Liu (2016) characterize the explicit expression for the expected
highest bids for sequential all-pay auctions with n-players and show that it is lower
than that in simultaneous all-pay auctions. Additionally, they use a laboratory exper-
iment to confirm this theoretical prediction.

Furthermore, a growing stream of experiments examines endogenous entry in
contests. Some of them examine the entry choice between rank-order tournaments
and other incentive structures, e.g., piece-rate (Bartling, Fehr, Marechal and Schunk
2009, Dohmen and Falk 2011, Eriksson, Teyssier and Villeval 2009) and fixed pay-
ment (Anderson and Stafford 2003, Dohmen and Falk 2011, Morgan, Orzen and
Sefton 2012). Specifically, when individuals are less risk-averse, they are more likely
to choose tournaments over other payment schemes (Dohmen and Falk 2011, Eriks-
son et al. 2009). Moreover, high-cost players are less likely to enter contests and
prefer fixed-payments (Anderson and Stafford 2003). Other studies focus on entry
choice between different types of contests, such as single v. multiple prize contests
(Vandegrift and Yavas 2010), and single v. proportional prize contests (Cason, Mas-
ters and Sheremeta 2010). Particularly, Cason et al. (2010) find that, compared to
single-prize contests, proportional-prize contests induce more entries and generate
higher total effort by encouraging the performance of low-ability contestants.

Compared to the aforementioned studies which examine the entry choice between
different payment schemes, our focus is on bid timing decisions, i.e., bidding at an
earlier or later stage. In other words, we assume that individuals voluntarily partici-
pate in a contest. However, before the contest starts, they need to decide when to bid,
and their bid timing decision jointly determines the contest structure, i.e., sequential
v. simultaneous contests. Altogether, this study provides the first experimental exam-
ination of individuals’ bid timing decisions in endogenous all-pay auctions. Further-
more, we examine the impact of tie-breaking rules on bid timing decisions. Next, we
compare the performance of all-pay auctions with endogenous bid timing and those
with exogenous bid timing, i.e., an exogenously simultaneous all-pay auction. Last
but not least, we examine individual strategy in simultaneous all-pay auctions with
complete information, i.e., whether players bid uniformly on their bid space.
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3 Theoretical Framework

In an all-pay auction, an object with value v is auctioned between two bidders.3 Bid-
der i has a linear cost function, ci(xi) = cixi, where xi is her bid. x̄i is the reach,
determined by cix̄i = v. Without loss of generality, we assume that c1 ≤ c2. For a
risk-neutral bidder, her payoff, πi(xi, xj), is:

πi(xi, x−i) =

{
v − cixi xi > xj ,
−cixi otherwise

The equilibrium for simultaneous all-pay auctions is characterized in Baye et al.
(1996) and summarized below:

1. When c1 = c2 = c, the unique NE is that both players randomize uniformly on
[0, v

c ], and the expected revenue is v
c .

2. When c1 < c2, the unique NE is that player 1 randomizes uniformly on [0, x̄2].
Player 2 randomizes uniformly on (0, x̄2] and her probability of bidding 0 is
1− c1. Additionally, the expected revenue is v

2c2
+ vc1

2c22
.

In a sequential all-pay auction, the late bidder submits her bid after observing
the early bid. Following Konrad and Leininger (2007), we assume a favor-late tie-
breaking (LTB) rule in our theoretical analysis to derive the strict SPNE. Specifically,
when there is a tie in the sequential game, the late bidder is always the winner.

When other tie breaking rules are used, e.g., the random tie-breaking rule and the
favor-early tie-breaking rule (ETB), we are not able to pin down the best response
function for bidders and the strict SPNE does not exist.4 For example, for homoge-
neous bidders, if the early bid xe < v/c, there is no optimal bid for the late bidder
under the continuous bid space. Additionally, a set of ε equilibria exists and lies in
ε-neighborhood of the strict SPNE (Konrad and Leininger 2007). If we assume that
people do not distinguish between infinitesimally small amounts of money such as
0.01 cent from zero and follow the argument of ε equilibria, we should not expect
significant behavioral differences under different tie-breaking rules.

When c1 = c2 = c, the SPNE is characterized below:

1. With the early bid: xe, the best response function for the late bidder is:

x∗l =

 xe xe < v/c,
{0, v/c} xe = v/c,

0 otherwise.

2. There are two equilibrium strategies for the early bidder: x∗e = 0 and x∗e = v/c.

When c1 < c2, the SPNE is analyzed in Konrad and Leininger (2007) and we
reproduce it here.

3 We relegate the analysis for n players to the appendix.
4 We would like to thank one of the anonymous referees for pointing this out.
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1. The best response function for the late bidder is identical to the homogeneous
case.

x∗l =

 xe xe < v/cl,
{0, v/cl} xe = v/cl,

0 otherwise.

2. When the early bidder is the low-cost player, the equilibrium strategy is: x∗e =
v/c2.5 When it is the high-cost player, the equilibrium strategy is: x∗e = 0.

Next we extend the model to an endogenously bid timing case. Before the auction
starts, the two players independently and simultaneously decide between the early
and late bidding stages. Everyone’s bid timing decision is then publicly announced,
and their bid timing decisions jointly determine the structure of the subsequent all-
pay auctions. The probability of entering the early bidding stage is qi for bidder i.

Assuming players follow the equilibrium play in the subgame, we analyze the
optimal bid timing decision for each player. For homogeneous bidders, conditional
on the subgame where the equilibrium outcome is that both early and late players bid
0, the equilibrium payoff for the early bidder is 0 and it is v/c for the late bidder.
Therefore, q∗i = 0 is the best response if qj > 0; otherwise, q∗i ∈ [0, 1]. In contrast,
conditional on the subgame where the equilibrium outcome is that the early player
bids v/c and the late player bids 0, the equilibrium payoff for both players is 0.
Consequently, q∗i ∈ [0, 1].

For heterogeneous bidders, if q2 > 0, the expected payoff for the low-cost player
1 to enter late is always higher than entering early. Therefore, q∗1 = 0. However,
if q2 = 0, her expected payoff between entering early and late is always the same.
Therefore, q∗1 ∈ [0, 1]. Additionally, since the expected payoff for the high-cost player
2 is always 0, q∗2 ∈ [0, 1].

4 Experimental Design

First, we identify two bidding cost environments. In the homogeneous environment,
the marginal bidding cost is 1 token/bid for both bidders. In the heterogeneous en-
vironment, one player is randomly selected as the high-cost bidder at the beginning
of each round and her bidding cost is 1 token/bid, while the low-cost bidder pays
0.8 token/bid. Second, we implement both endogenous- and exogenous entry treat-
ments, and the latter is used to replicate results from the relevant literature (Davis and
Reilly 1998, Gneezy and Smorodinsky 2006, Lugovskyy et al. 2010). In endogenous-
entry treatments, we include both ETB and LTB to examine the effect of tie breaking
rules, yielding both endogenous-entry-ETB and endogenous-entry-LTB treatments.

Altogether, we have a 2×3 factorial design (Table 1). Each treatment has three in-
dependent sessions, with 12 subjects in each session. At the beginning of each round,
subjects are randomly matched into groups of two. Since our model assumes one-shot
interactions, the random re-matching protocol minimizes repeated-game effects. The
value of the object is always set at 100 tokens, and the entire structure of the game

5 Strictly speaking, it is x∗e = v/c2 + ε, and when ε→ 0, x∗e → v/c2.
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Table 1: Experimental Design

Auction Bid Tie-Breaking Homogeneous Heterogeneous Total
Format Timing Rule Bidders Bidders Subjects
Sim Exogenous Random 12× 3 12× 3 72
Sim Endogenous ETB 12× 3 12× 3 72or Seq
Sim Endogenous LTB 12× 3 12× 3 72or Seq

is common knowledge. To prevent any potential bankruptcy problems, we give every
subject 125 tokens as an endowment at the beginning of each round. Finally, each
session lasts 30 rounds to capture any learning effect.

In exogenous-entry treatments, there is no entry decision stage and every subject
submits a bid independently and simultaneously. At the end of each round, the highest
bidder wins and each bidder pays for her own bid. If there is a tie for the highest bid,
the winner is chosen randomly.

Conversely, in endogenous-entry treatments, each player first chooses to enter the
early vs. late bidding stage. After the entry decisions are shared between the two
players, each of them chooses a bid in her respective bidding stage. When both play-
ers choose the same stage, they bid independently and simultaneously and the tie is
randomly broken, as in exogenous-entry treatments. When they enter different bid-
ding stages and submit the same bid, the early (late) bidder is the winner in the ETB
(LTB) treatment. In other words, the tie-breaking rule difference between ETB and
LTB treatments only occurs when a sequential all-pay auction is formed. A sample
of the instructions is included in Appendix B.

After players participate in 30 rounds, we implement the lottery choices out-
lined in Tanaka, Camerer and Nguyen (2010) to measure individual risk preference.
Then we give each participant a post-experiment questionnaire which includes demo-
graphic and personality trait questions.6

Altogether, we conducted 18 independent computerized sessions at the School of
Information Lab at the University of Michigan in May 2010, utilizing a total of 216
subjects. Subjects were students at the University of Michigan, recruited by email
from a subject pool for economic experiments. We allowed subjects to participate
in only one session. We used z-Tree (Fischbacher 2007) to program our experi-
ments. Each session lasted approximately one hour, with the first 15 minutes used
for instructions. The exchange rate was set at 8 tokens per USD. Additionally, each
participant was paid a $5 show-up fee. The average amount participants earned was
$20, including the show-up fee. Data are available from the author upon request.

6 Both the lottery choices and the post-experiment survey are included in online appendices.
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5 Results

In this section, we first report entry decisions in endogenous-entry treatments and
compare performance between endogenous- and exogenous-entry treatments. Subse-
quently, we investigate whether individuals randomize in simultaneous all-pay auc-
tions.

Three common features apply throughout our analysis. First, for non-parametric
tests, we treat each session as one independent observation and compute the average
within the session across multiple rematched pairs and all periods. Therefore, we have
three independent observations per treatment. Second, for regression analyses, stan-
dard errors are also clustered at session level, which allows any form of correlations
among observations within a session. Finally, two-sided p-values are reported.

5.1 Entry Decisions
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Figure 1: The Proportion of Entering Early for Homogeneous Bidders
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Figure 2: The Proportion of Entering Early for Heterogeneous Bidders

First, Konrad and Leininger (2007) predict that compared to LTB, other tie-
breaking rules, e.g., ETB, would produce ε equilibria that lie in ε- neighborhood



All-Pay Auctions with Endogenous Bid Timing: An Experimental Study 9

of the strict SPNE. Therefore, by following the argument of ε equilibria, we have the
following hypothesis.

Hypothesis 1 (Effects of Tie-Breaking Rules) In endogenous-entry treatments, tie-
breaking rules do not affect bid timing decisions.

Figure 1 presents the proportion of early entries for homogeneous bidders under
different tie-breaking rules. The dashed line refers to the ETB treatment, while the
solid line is the LTB treatment. Although the proportion of early entries decreases
with time, it is always higher in ETB than LTB, except in rounds 12 and 29. In con-
trast, no significant difference exists for heterogeneous bidders (Figure 2). By using a
test of proportions with standard errors clustered at session level, we summarize the
results below.

Result 1 (Entry Decisions) Homogeneous bidders are significantly more likely to
enter early under ETB than LTB (9% v. 2%, p = 0.005), while there is no significant
difference for heterogeneous bidders (low-cost : 9% v. 5%, p = 0.407; high-cost: 8%
v. 5%, p = 0.615).

In contrast with Hypothesis 1, Result 1 suggests that ETB induces significantly
more early bids for homogeneous bidders, but not for heterogeneous bidders. One
possibility is that, homogeneous bidders may expect that the early bidder garners
more advantage to win the game when ETB is implemented. However, as the winning
probability for the low-cost player is obviously higher than the high-cost one, the tie-
breaking rule may not affect their bid timing decisions.7

Although the theory does not have a clear prediction for the likelihood of entering
into the late stage for the high-cost player, i.e., q∗2 can be any number in [0,1], our
experiment reveals that these players overwhelmingly choose the late bidding stage.
This extends the use of experimental methods to solve the equilibrium selection prob-
lem in games with multiple Nash equilibria (Brandts and Holt 1993, Cabrales, Nagel
and Armenter 2007, Chen and Chen 2011, Goeree and Holt 2005).

We conjecture that conditional on low-cost players choosing late, high-cost play-
ers may still have more incentive to enter late and participate in a simultaneous game
rather than staying early and getting zero payoff for sure. Though the expected payoff
in simultaneous all-pay auction is always zero,8 their winning probability is positive
and expost payoff can be positive. For example, the theory predicts that high-cost
bidders have a 40% chance of winning in simultaneous all-pay auctions, and, in the
experiment, it is 34% for ETB and 35% for LTB. Additionally, since a certain propor-
tion of low-cost bidders enter early and bid less than 100 (Figure 5 in Section 5.2),
entering late is a best reply for high-cost bidders.

5.2 Endogenous v. Exogenous All-Pay Auctions

In this section, we examine individual bids in both sequential and simultaneous all-
pay auctions. Moreover, we compare revenue, players’ earnings and efficiency be-

7 We would like to thank one of the anonymous referees for suggesting this explanation.
8 In Section 5.3, we show that the expected payoff for high-cost players is always zero even under the

risk- and loss-averse assumption (Proposition 1).
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tween treatments. Assuming the existence of two types of sequential games, espe-
cially the one in which the early player bids 0, we have the following hypothesis.

Hypothesis 2 (Endogenous v. Exogenous All-Pay Auctions: Homogeneous Bidders)
For homogeneous bidders, the revenue in the endogenous-entry treatment will be less
than that in the exogenous-entry treatment.
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Figure 3: Early Homogeneous Bidders in Sequential All-Pay Auctions
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Figure 4: Homogeneous Bidders in Simultaneous All-Pay Auctions

For homogeneous bidders in sequential all-pay auctions, Figure 3 presents the
early bids with ETB (left panel) and with LTB (right panel), respectively. The circles
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represent individual bids and the size of the circle indicates the number of observa-
tions for the particular bid. The solid lines are bids predicted by SPNE. With ETB,
many conform to equilibria characterization, i.e., 20% of them are equal to or above
100, while 36% are equal to or near 0.9 However, as our SPNE predictions are at
the boundary (Kimbrough, Sheremeta and Shields 2014, Laury and Holt 2008, List
2007), a substantial proportion of bids still deviates from SPNE.10 Additionally, 80%
of late bidders under ETB best respond to their early bidders. Similarly, early bids
are also bifurcated under LTB, while we are not able to draw any robust conclusions
because of limited number of observations.

In simultaneous all-pay auctions, Figures 4 presents the average bid in endogenous-
and exogenous-entry treatments, respectively.11 Overbidding is observed in early
rounds, but decreases in later rounds. Aggregately there is no significant difference
from NE prediction (p > 0.1, signed-rank tests). Furthermore, the pairwise compari-
son between treatments is not significant either (p > 0.1, rank-sum tests), indicating
that whether individuals endogenously choose or are exogenously assigned to simul-
taneous all-pay auctions does not affect their bids.

Table 2: Determinants of Revenue in All-Pay Auctions

Dependent Variable Homogeneous Heterogeneous
(1) (2)

ETB -10.10 -13.40**
(8.31) (4.30)

LTB -8.20 5.66
(9.91) (4.22)

Round -0.62*** -1.71***
(0.14) (0.35)

Constant 112.00*** 136.40***
(7.81) (4.66)

Observations 1,613 1,611
R2 0.017 0.070
Notes: 1. Standard errors are in parentheses.
2. Significant at: * 10%; ** 5%; *** 1%.

Finally, we report the revenue comparison between treatments. Table 2 presents
OLS regression results. The dependent variable is the revenue in each auction, the
independent variables are ETB, LTB treatment dummies, and we control for learning
effect by using the round variable. As a certain proportion of early players bid 100
or above in sequential all-pay auctions, the treatment dummies are not significant
for homogeneous bidders (column 1 in Table 2). In addition, the round variable is

9 Following Gneezy and Smorodinsky (2006), we use bids ≤ 5 as the cutoff for “near-zero” bids.
Moreover, the results are qualitatively similar when different cutoffs are used.

10 We would like to thank one of the anonymous referees for pointing this out.
11 Because only 1% of simultaneous all-pay auctions in endogenous treatments have both bidders in the

early stage, we focus on simultaneous all-pay auctions with two late bidders.



12 Tracy Xiao Liu

negative and significant at the 1% level, suggesting a salient learning effect on the
amount of revenue.12

Result 2 (Revenue: Homogeneous Bidders) For homogeneous bidders, the revenue
in the endogenous-entry treatment is not significantly different from that in the exogenous-
entry treatment.

By Result 2, we can not reject the null in favor of Hypothesis 2. Consistently,
average earnings are not significantly different between treatments (p > 0.1, rank-
sum tests).
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Figure 5: Early Heterogeneous Bidders in Sequential All-Pay Auctions

Subsequently, we examine revenue for heterogeneous bidders. Assuming the ex-
istence of a sequential game in which the early high-cost player bids 0, we have the
following hypothesis.

Hypothesis 3 (Endogenous v. Exogenous All-Pay Auctions: Heterogeneous Bidders)
For heterogeneous bidders, the revenue in the endogenous-entry treatment will be less
than that in the exogenous-entry treatment.

Figure 5 plots early bids in sequential all-pay auctions. The circles (diamonds)
represent ETB (LTB), and the solid line is SPNE. For high-cost bidders, their bids are
bifurcated at the beginning and decrease significantly with experience. After round
15, the proportion of “near-zero” bids is 79%, and moves to 100% in the last five
rounds. For low-cost ones, their bids are bifurcated even in the last five rounds.

Figure 6 presents the average bid for both high- and low-cost bidders in simulta-
neous all-pay auctions. Consistent with homogeneous bidders, both players overbid
at the beginning and decrease their bids with experience. Moreover, the average bid
for both bidders is not significantly different from NE (p > 0.1, signed-rank tests).
There is no significant treatment difference for low-cost bidders. Surprisingly, the av-
erage bid for high-cost bidders in the ETB treatment is significantly lower than the
other two treatments (ETB v. LTB: 36 v. 48, p = 0.050; ETB v. Exogenous: 36 v. 49,
p = 0.050; LTB v. Exogenous: 48 v. 49, p = 0.513, rank-sum tests).

12 The pairwise comparisons from non-parametric tests are consistent with regression results (ETB v.
LTB: 92 v. 94, p = 0.513; ETB v. Exogenous: 92 v. 102, p = 0.513; LTB v. Exogenous: 94 v. 102,
p = 0.827, rank-sum tests).
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Figure 6: Heterogeneous Bidders in Simultaneous All-Pay Auctions

Finally, we compare the revenue for heterogeneous bidders between treatments.
Column 2 in Table 2 reports regression results. As in the ETB treatment, 50% of
high-cost early bidders choose 0 and their bids in simultaneous all-pay auctions are
also lower than in other treatments, the estimated coefficient of ETB is negative and
significant at the 5% level. However, there is no significant difference between LTB
and exogenous-entry treatments.13 We summarize the results below:

Result 3 (Revenue: Heterogeneous Bidders) For heterogeneous bidders, the rev-
enue in the ETB treatment is significantly lower than the exogenous-entry treatment.

Result 3 rejects the null in favor of Hypothesis 3 for the ETB treatment. Additionally,
the average earnings in each round are higher in the ETB treatment than in the other
two treatments (ETB v. LTB: 8 v. -1, p = 0.050; ETB v. Exogenous: 8 v. 1, p = 0.050,
rank-sum tests).

13 The non-parametric tests present the same results (ETB v. LTB: 96 v. 115, p = 0.05; ETB v. Exoge-
nous: 96 vs. 110, p = 0.05; LTB v. Exogenous: 115 vs. 110, p = 0.513, rank-sum tests).
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Table 3: Efficiency Comparison for Heterogeneous Bidders

Treatment Efficient Utilization
Allocation Ratio

ETB 64% 1.34
LTB 66% 1.40
Exogenous 59% 1.38
ETB v. LTB 0.827 0.050
ETB v. Exogenous 0.513 0.127
LTB v. Exogenous 0.127 0.513
Note: p-values are computed using rank-sum tests.

Additionally, we discuss the efficiency for heterogeneous bidders. Based on prior
studies (Plott and Smith 1978, Noussair and Silver 2006), an efficient allocation is
that the winner is the low-cost bidder. Furthermore, since everyone’s effort is forfeited
in an all-pay auction, another way to evaluate efficiency is to measure the amount of
wasted effort. The lower the wasted effort, the higher the efficiency. Chawla et al.
(2012) define a “utilization ratio” to quantify this efficiency measurement. It is de-
fined as the ratio of expected total bids by all participants to the expected highest
bids.14 Table 3 presents summary statistics for both efficiency measurements. First,
the proportion of efficient allocation in the endogenous-entry treatment is higher than
in the exogenous-entry treatment, although the comparison is not statistically signif-
icant. Moreover, the utilization ratio in the ETB treatment is lower than in the other
two treatments. Particularly, the comparison between ETB and LTB is significant at
the 5% level (p = 0.050). This suggests that, although the ETB treatment generates
lower revenue compared to others, it has the advantage of lowering the amount of
waste in all-pay auctions.

5.3 Individual Strategy Analysis in Simultaneous All-Pay Auctions

In this section, we investigate whether bidders, whose average bid is consistent with
NE predictions in simultaneous all-pay auctions, have the same bidding distribu-
tion as shown by NE predictions with risk-neutral bidders. It is worth noting that
bids in experiments are discrete, and a continuum of (a)symmetric NE exists (Baye,
Kovenock and de Vries 1994, Bouckaert, Degryse and Vries 1992, Li 2015). How-
ever, as both the reward size and the bid space in our experiment are relatively large,
we use the NE prediction under the continuous bid space as the basis for hypotheses
testing.

Hypothesis 4 (Individual Strategy in Simultaneous All-pay Auctions) In simulta-
neous all-pay auctions, homogeneous and low-cost bidders randomize uniformly on
[0, 100]. The high-cost bidder randomizes uniformly on (0, 100] and the probability
for bidding 0 is 0.2.

14 We compute the utilization ratio at the session level where the expected total bids are approximated
by the average revenue and the expected highest bid is the average highest bid.
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Figure 7: Homogeneous Bidders in Simultaneous All-Pay Auctions

Table 4: Percentage of Each Bidder Type in Simultaneous All-Pay Auctions

Bidder Type Homogeneous Low-Cost High-Cost All
Under-Bidders 14 11 8 11
Over-Bidders 13 4 7 8
Random-Bidders 20 47 53 40
Others 53 38 31 41

Figures 7, 8 and 9 present the respective bidding histograms for each type of bid-
ders (left column), the bidding CDF for both actual bids and NE predictions (right
column). In contrast with NE, the bidding distribution largely follows a bimodal pat-
tern (Ernst and Thöni 2013, Klose and Sheremeta 2012). Furthermore, the proportion
of near-zero bids is also higher than NE for high-cost bidders, e.g., it is 42% under
ETB. Additionally, low-cost bidders often choose to bid 125, suggesting the impor-
tance of the “joy of winning” (Parco, Rapoport and Amaldoss 2005, Sheremeta 2010).
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Figure 8: High-Cost Bidders in Simultaneous All-Pay Auctions

Applying the econometric model in Wooders (2010) and Walker and Wooders
(2001), we further confirm that bids are not uniformly distributed in [0, 100]. Using
the expected bid under the risk-neutral model as the cutoff, which is defined as c0,
we categorize players into four types: (1) under-bidders: those who consistently bid
less than c0; (2) over-bidders: those who consistently bid more than c0; (3) random-
bidders: those who are equally likely to bid between [0, c0] and (c0, 100]; and (4)
others: those who neither randomize nor maintain the same strategy. Table 4 lists
the percentage for each type. We summarize this result below and the details of the
analysis are described in online appendices.

Result 4 (Individual Bids in Simultaneous All-pay Auctions) In simultaneous all-
pay auctions, 40% of bidders randomize their bids, 8% overbid, and 11% underbid.

In contrast with Hypothesis 4, Result 4 indicates that bidding strategies are het-
erogeneous in simultaneous all-pay auctions and individuals do not necessarily play
uniformly. Following the all-pay auction literature, we extend the model to include
risk- and loss-aversion (Fibich et al. 2006, Noussair and Silver 2006, Ernst and
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Figure 9: Low-Cost Bidders in Simultaneous All-Pay Auctions

Thöni 2013, Klose and Sheremeta 2012). Assuming α is the risk-aversion param-
eter, where 0 < α ≤ 1, λ is the loss-aversion parameter with λ ≥ 1, and normalizing
c = c2 = 1, we obtain the following proposition for n players.

Proposition 1 (Simultaneous All-Pay Auctions with Risk- and Loss-Averse Bidders)

1. The unique symmetric NE is still the mixed strategy NE where individuals ran-
domize on [0, v].15

2. For all active bidders in the equilibrium, the bidding CDF: Gi(x), satisfies:
G′′i (x) < 0 with 0 ≤ x� v and G′′i (x) > 0 with 0 ≤ v − x� v.

3. For bidder 2 among heterogeneous bidders, G2(0) ≥ Grn
2 (0).16

15 For homogeneous bidders, all players randomize, while for heterogeneous bidders, only players 1 and
2 randomize and others always bid 0.

16 G2(0) is bidder 2’s probability of bidding 0. Grn2 (0) is her probability of bidding 0 with risk and
loss neutrality.
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Proof See Appendix A.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CDF for Same (Low)−Cost Bidders

 

 

α=0.75,λ=1.2

α=0.5,λ=1.5

α=1,λ=1

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CDF for High−Cost Bidders

 

 

α=0.75,λ=1.2

α=0.5,λ=1.5

α=1,λ=1

Figure 10: Bidding CDF for Risk- and Loss-Averse Bidders in Simultaneous All-Pay
Auctions

Figure 10 presents two numerical examples. In each graph, the solid line rep-
resents the risk-neutral model and the dots (dashed line) represent relatively higher
(lower) risk- and loss-aversion. The bidding CDF exhibits an inverse S-shape; in par-
ticular, high-cost bidders have a higher probability of bidding 0 than those in the
risk-neutral model. Additionally, higher risk-aversion implies more bifurcated indi-
vidual bids, and higher loss-aversion implies a greater number of lower bids.

Subsequently, similar to Ernst and Thöni (2013) and Klose and Sheremeta (2012),
we estimate risk- and loss-aversion parameters using our experimental data. Table 5
reports the Maximum Likelihood Estimation results. Both homogeneous and hetero-
geneous bidders exhibit risk- and loss-aversion.17 Moreover, the model with risk-
and loss-averse bidders fits the data significantly better than the model with risk- and
loss-neutral bidders or the model with risk-averse and loss-neutral bidders (p < 0.01,
Likelihood Ratio tests).

6 Discussion

This experiment investigates individual bid timing decisions in all-pay auctions with
complete information. Our results show that, compared to a LTB, an ETB rule induces
more early bids for homogeneous bidders, especially in the early rounds. However,
the use of different tie-breaking rules does not affect heterogeneous players’ bid tim-
ing decisions. Particularly, we observe that high-cost bidders dominantly enter the
late bidding stage.

Furthermore, when players have homogeneous abilities, the revenue in endogenous-
entry treatments is not significantly different from that in exogenous-entry treatments.

17 Both Klose and Sheremeta (2012) and Ernst and Thöni (2013) estimate α < 1, while the size of λ
varies with experiment conditions.
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Table 5: Risk and Loss Aversion Estimation

Homogeneous High-Cost Low-Cost
Model Model Model

(1) (2) (3) (1) (2) (3) (1) (2) (3)
α 1 0.69 0.70 1 0.73 0.75 1 0.67 0.67
(σ2) (0.03) (0.03) (0.03) (0.03) (0.05) (0.05)
λ 1 1 1.33 1 1 1.29 1 1 1.23
(σ2) (0.13) (0.22) (0.24)
-Log(L) 13304 13017 12982 5369 5280 5274 5126 4997 4989
LR Test (P-Values)
1 v. 2 0.000 0.000 0.000
1 v. 3 0.000 0.000 0.000
2 v. 3 0.000 0.001 0.000
Obs. 2889 2889 2889 1306 1306 1306 1113 1113 1113

Conversely, for heterogeneous bidders, because of the low bids for high-cost bidders
under ETB, their revenue is lower than in the exogenous-entry treatment.

Finally, we examine individual strategies in simultaneous all-pay auctions, and
find that a significant proportion of bidders do not randomize as predicted by the
risk-neutral model. Instead, bidders are more likely to have either extremely high or
low bids. This finding is consistent with the predictions of an extended model with
risk and loss aversion.

Our results have practical implications for contest designers, e.g., web designers
for crowdsourcing contests. First, if the contest designer aims to attract earlier en-
trants, a simple ETB rule can be effective, especially for inexperienced entrants, who
are the majority of users on platforms (Yang, Adamic and Ackerman 2008). Second,
if they want to elicit more effort from participants, simultaneous contests would be a
better choice than sequential ones.

However, many important and interesting features in real-life contest platforms
are not considered in our study. For example, as participants dynamically enter con-
tests, the number of contestants is unknown. Second, as contestants can be inspired by
prior solutions and produce better solutions by free riding on prior solutions, it may
be more effective to solicit high-quality solutions from sequential all-pay auctions
than from simultaneous all-pay auctions. These constitute scope for future research.
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A Proofs

Equilibrium Characterization for All-Pay Auctions with n Players:
The analysis for heterogeneous bidders follows Konrad and Leininger (2007), and we focus on equi-

librium characterization for homogeneous players. Assuming a favor-late tie-breaking rule, we first char-
acterize the SPNE in sequential all-pay auctions.

Following Konrad and Leininger (2007), we first consider the subgame at the late stage (L). The
maximum bids from the early stage (E) are characterized by x̄E ≡ maxi∈E{xi}. xiL represents the best
response in stage L for bidder i. Given x̄E , we have:

1. If cx̄E > v, xiL = 0.
2. If cx̄E = v, if there is only one player in the late stage, she is indifferent between bidding v and 0. If

there are more than one bidder, either all of them bid 0 or one of them bids v.
3. If cx̄E < v, if there is only one player in the late stage, she would bid x̄E . If there are more than one

bidder, it becomes a simultaneous all-pay auction with lower bound x̄E , and the expected payoff for
all late player is always 0.

Now we consider stage E. As x̄L ≡ maxi∈L{x̄i} and x̄i = x̄ = v
c

for homogeneous bidders, the
equilibrium bids in stage E for bidder i: xiE , is characterized below.

1. If there is more than one bidder in stage E, there are two types of equilibrium strategies.
(a) One player bids x̄ and all others bid 0.
(b) All players bid 0.

2. If there is one and only one bidder i in stage E, similarly, xiE = {x̄, 0}.
When all bidders enter either stage E or stage L together, the game becomes a simultaneous all-pay

auction and the unique symmetric Nash equilibrium is that bidders randomize continuously on [0, x̄]. The
expected payoff for everyone is always 0.

Furthermore, when the bid timing decision is endogenous, conditional on the subgame where all early
players bid 0 in the equilibrium, q∗i = 0 is a best reply if

∏
qj 6=i > 0. Otherwise, q∗i ∈ [0, 1].
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Proof of Proposition 1:
The proof for the unique symmetric NE follows the line of the argument in Baye et al. (1996), and we

focus on the analysis of G1(x) and G2(x). The proof for homogeneous bidders is similar to G1(x), so
we omit it.

As the expected payoff for bidder 2 is always 0 in the equilibrium (Siegel 2009), we obtain:

U2(x) = G1(x)u(v − x) + (1−G1(x))u(−x) = 0.

Consequently,

G1(x) =
−u(−x)

u(v − x)− u(−x)
.

The utility function is defined below:

u(x) =

{
xα if x ≥ 0
−λ(−x)α otherwise.

As G1( v
2

)u( v
2

) + (1−G1( v
2

))u(− v
2

) = 0, G1( v
2

) = λ
1+λ

≥ 1
2

.
As ∀x ∈ (0, v), U2(x) = 0 in the equilibrium, U ′2(x) = 0 and U ′′2 (x) = 0. Defining g1(x) =

G′1(x), we obtain:

g1(x) =
(1−G1(x))u′(−x) +G1(x)u′(v − x)

u(v − x)− u(−x)
> 0.

Furthermore, U ′′2 (x) = 0 yields the following equation:

g′1(x)(u(v−x)−u(−x)) = 2g1(x)(u′(v−x)−u′(−x))−G1(x)u′′(v−x)−(1−G1(x))u′′(−x).

Defining Z(x) = 2g1(x)(u′(v − x)− u′(−x))−G1(x)u′′(v − x)− (1−G1(x))u′′(−x), we
show that Z(x) ≤ 0 when 0 ≤ x� v, and that Z(x) ≥ 0 when 0 ≤ v − x� v.

First, ∃ v
2
≤ x1 = v

1+λ
1

α−1

< v, u′(v − x1) = u′(−x1). As u(x) is concave with x ≥ 0, ∀

x ≥ x1, u′(v − x) ≥ u′(−x) > 0, and by explicit calculation, u′′(v − x) ≤ −u′′(−x) < 0. Together
with G1(x) ≥ 1

2
, Z(x) ≥ 0.

Second, as G1( v
2

) ≥ 1
2

, then ∃ x0 ≤ v
2

, G(x0) = 1
2

. Furthermore, ∀ x ≤ x0 < x1, 0 < u′(v −
x) ≤ u′(−x), and by explicit calculation, −u′′(−x) ≤ u′′(v − x) < 0. Together with G1(x) ≤ 1

2
,

Z(x) ≤ 0.
Because of the continuity of Z(x), ∃ y where x0 ≤ y ≤ x1, Z(y) = 0 and g′1(y) = 0. Now we

show that y is unique.
If ∃ Z(y1) = Z(y2) = 0, by the continuity of Z(x) and the intermediate value theorem, one of

them, e.g., y1, must have Z′(y1) ≤ 0. However, we know that

Z′(x) = 2g′1(x)(u′(v − x)− u′(−x)) + 2g1(x)(−u′′(v − x) + u′′(−x))

−g1(x)u′′(v − x) +G1(x)u′′′(v − x) + g1(x)u′′(−x) + (1−G1(x))u′′′(−x)

When x = y1, Z′(y1) = 3g1(y1)(u′′(−y1) − u′′(v − y1)) + G1(y1)u′′′(v − y1) + (1 −
G1(y1))u′′′(−y1) > 0, which is a contradiction.

Along the same line of proof for G1(x), G′′2 (x) < 0 with 0 ≤ x � v, and G′′2 (x) > 0 with

0 ≤ v − x � v. Additionally, as G2(0) =
u((1−c1)v)

u(v)
and Grn2 (0) =

(1−c1)v
v

, by the concavity of
u(x) with x ≥ 0, G2(0) ≥ Grn2 (0).
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B Experimental Instruction

This is an experiment in decision-making. The experiment will proceed in two parts and you will make a
series of decisions in each part. At the end, you will fill out a post-experiment questionnaire.

This experiment has 12 participants. Each of you has been randomly assigned an experiment ID at the
beginning of the experiment. The experimenter will use this ID to pay you at the end of the experiment.

Rounds: The experiment consists of 30 rounds of two-person auctions.
Endowment: Each of you has 125 tokens as an endowment at the beginning of each round.
Prize Values: At the beginning of each round, an object with a value of 100 tokens will be auctioned

within each two-person group.
Matching: At the beginning of each round, you will be randomly matched with another person. You

are equally likely to be matched with any other person in the room.
Decisions: In each round, you must make two decisions. First, both you and your match choose

independently and simultaneously which bidding stage you want to enter. The entry decisions are then
announced to both of you. Second, you and your match each choose a bid in your respective bidding stage.

Bids: There are two bidding stages: the early stage and the late stage.
1. If you enter early and your match enters late, you will choose a bid first. After observing your bid,

your match will choose his or her bid.
2. If you enter late and your match enters early, your match will choose a bid first. After observing his

or her bid, you will choose your own bid.
3. If both of you choose the same stage, you will bid simultaneously.

Cost of the Bid: The cost of the bid captures the idea that it is sometimes more or less costly to submit
a bid. In the experiment, it is determined by a random number generator at the beginning of each round.
For each round, with 50% chance, the cost of the bid is 1 token for you and 0.8 tokens for your match.
With 50% chance, the cost of the bid is 0.8 tokens for you and 1 token for your match. Here is a numerical
example:

1. If the cost of your bid is 1 token and you bid 50, then you will pay 50 tokens.
2. If the cost of your bid is 0.8 tokens and you bid 50, then you will pay 40 tokens.

Bid Range: Your bid can be any integer between 0 and 125, inclusive.
Profits: In each round, your profits will be determined by (1) your bid; (2) your match’s bid; (3) the

cost of your bid; and (4) the entry decisions in the event of a tie.
Profits= Your Endowment- the cost of your bid*your bid + the value of the object if you win = 125 -

the cost of your bid*your bid+ 100 if you win
For example, in a given round, if you bid 40 and the cost of your bid is 0.8 in this round, then

1. If you win the auction, then your profit is 125− 0.8 ∗ 40 + 100 = 193 tokens
2. If you lose the auction, then your profit is 125− 0.8 ∗ 40 = 93 tokens

Note: You will always pay for your bid, which is equal to the cost of your bid* your bid, no matter
whether you win or lose.

The tie-breaking rule: If you and your match bid exactly the same amount, and
1. Both of you enter in the same stage, we will randomly choose one as the winner.
2. If one and only one of you enter in the early stage, then the early bidder will be the winner.

Cumulative Profits: Your cumulative profits will be the sum of your profits in all rounds.
Feedback: At the end of each round, you will get the following feedback on your screen:

1. Your entry decision
2. Your match’s entry decision
3. Your bid
4. Your match’s bid
5. Your profits
6. Your match’s profits
7. Your cumulative profits

History: In each round, your and your matches’ bids and entry decisions in each previous round, your
and your matches’ profits in each previous round, as well as your cumulative profits up until the last round
will be displayed in a history box.

Review Questions: To help you understand the experiment, we will go over nine review questions
before we start the auction. You can also find these review questions in the appendix for your reference.
You will get 25 tokens for answering each of the review questions correctly.

Exchange Rate: $1 = 250 tokens.
Please do not communicate with each other during the experiment. If you have a question, feel free to

raise your hand, and an experimenter will come to help you.
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Online Appendices
Lottery Choice

After 30 rounds of auctions, you will make choices for three series of paired lotteries, such as those
represented as “Option A” and “Option B” below. In both series 1 and 2, there are 14 lottery questions. In
series 3, there are 7 lottery questions.

For each series, you are asked to choose a “switch” question from Option A to Option B. For example,
you can choose to switch from Option A to Option B in Question 6, which means you will choose Option
A from Question 1 to 5 while you will choose Option B from Question 6 to the end of the series. You can
also choose to never switch to Option B, which means you always choose Option A for all questions in
the series. You can also choose to switch to Option B from Question 1, which means you always choose
Option B for all questions in this series.

Even though there are 35 lottery questions, only one of them will end up being used. The selection of
the one to be used depends on a random number generator, which is the equivalent of throwing a 35-sided
die. Each lottery (Series 1: 1-14; Series 2: 1-14; Series 3: 1-7) is equally likely to be chosen.

After the lottery question is chosen, the money prize that you receive is determined by another random
number generator, which is equivalent of throwing a ten-sided die. Each outcome, 1, 2, 3, 4, 5, 6, 7, 8, 9,
and 10, is equally likely to be chosen. For example, if the number drawn from the first random number
generator is 29, then the 29th lottery, which is the first lottery in series 3, is chosen. Furthermore, consider
if the number drawn from the second random number generator is 4. If you chose Question 2 as the switch
question for series 3, which means you choose Option A for question 1, then you will get 25 tokens. If you
chose Question 1 as the switch question for series 3, which means you chose Option B for Question 1, you
will get 30 tokens.

Review Questions: To help you understand the lottery, we will go over one review question before
we start. You will also get 25 tokens for answering the review question correctly.

Recall the exchange rate is still $1 = 250 tokens in the lottery.
Final Payment: Your final payment in this experiment will be:
Your Earnings in the Review Question Part (for both auction and lottery) + Your Cumulative Profits

in the Auction (Part1) + Your Profits in the lottery (Part2) + Participation Fee ($ 5)
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Series1-Lottery Number Option A Option B
1 40 if the die is 1-3 68 if the die is 1

10 if the die is 4-10 5 if the die is 2-10

2 40 if the die is 1-3 75 if the die is 1
10 if the die is 4-10 5 if the die is 2-10

3 40 if the die is 1-3 83 if the die is 1
10 if the die is 4-10 5 if the die is 2-10

4 40 if the die is 1-3 93 if the die is 1
10 if the die is 4-10 5 if the die is 2-10

5 40 if the die is 1-3 106.5 if the die is 1
10 if the die is 4-10 5 if the die is 2-10

6 40 if the die is 1-3 125 if the die is 1
10 if the die is 4-10 5 if the die is 2-10

7 40 if the die is 1-3 150 if the die is 1
10 if the die is 4-10 5 if the die is 2-10

8 40 if the die is 1-3 185 if the die is 1
10 if the die is 4-10 5 if the die is 2-10

9 40 if the die is 1-3 220 if the die is 1
10 if the die is 4-10 5 if the die is 2-10

10 40 if the die is 1-3 300 if the die is 1
10 if the die is 4-10 5 if the die is 2-10

11 40 if the die is 1-3 400 if the die is 1
10 if the die is 4-10 5 if the die is 2-10

12 40 if the die is 1-3 600 if the die is 1
10 if the die is 4-10 5 if the die is 2-10

13 40 if the die is 1-3 1000 if the die is 1
10 if the die is 4-10 5 if the die is 2-10

14 40 if the die is 1-3 1700 if the die is 1
10 if the die is 4-10 5 if the die is 2-10
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Series2-Lottery Number Option A Option B
1 (15) 40 if the die is 1-9 54 if the die is 1-7

30 if the die is 10 5 if the die is 8-10

2 (16) 40 if the die is 1-9 56 if the die is 1-7
30 if the die is 10 5 if the die is 8-10

3 (17) 40 if the die is 1-9 58 if the die is 1-7
30 if the die is 10 5 if the die is 8-10

4 (18) 40 if the die is 1-9 60 if the die is 1-7
30 if the die is 10 5 if the die is 8-10

5 (19) 40 if the die is 1-9 62 if the die is 1-7
30 if the die is 10 5 if the die is 8-10

6 (20) 40 if the die is 1-9 65 if the die is 1-7
30 if the die is 10 5 if the die is 8-10

7 (21) 40 if the die is 1-9 68 if the die is 1-7
30 if the die is 10 5 if the die is 8-10

8 (22) 40 if the die is 1-9 72 if the die is 1-7
30 if the die is 10 5 if the die is 8-10

9 (23) 40 if the die is 1-9 77 if the die is 1-7
30 if the die is 10 5 if the die is 8-10

10 (24) 40 if the die is 1-9 83 if the die is 1-7
30 if the die is 10 5 if the die is 8-10

11 (25) 40 if the die is 1-9 90 if the die is 1-7
30 if the die is 10 5 if the die is 8-10

12 (26) 40 if the die is 1-9 100 if the die is 1-7
30 if the die is 10 5 if the die is 8-10

13 (27) 40 if the die is 1-9 110 if the die is 1-7
30 if the die is 10 5 if the die is 8-10

14 (28) 40 if the die is 1-9 130 if the die is 1-7
30 if the die is 10 5 if the die is 8-10
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Series3-Lottery Number Option A Option B
1 (29) 25 if the die is 1-5 30 if the die is 1-5

-4 if the die is 6-10 -21 if the die is 6-10

2 (30) 4 if the die is 1-5 30 if the die is 1-5
-4 if the die is 6-10 -21 if the die is 6-10

3 (31) 1 if the die is 1-5 30 if the die is 1-5
-4 if the die is 6-10 -21 if the die is 6-10

4 (32) 1 if the die is 1-5 30 if the die is 1-5
-4 if the die is 6-10 -16 if the die is 6-10

5 (33) 1 if the die is 1-5 30 if the die is 1-5
-8 if the die is 6-10 -16 if the die is 6-10

6 (34) 1 if the die is 1-5 30 if the die is 1-5
-8 if the die is 6-10 -14 if the die is 6-10

7 (35) 1 if the die is 1-5 30 if the die is 1-5
-8 if the die is 6-10 -11 if the die is 6-10
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Post-questionnaire

We are interested in whether there is a correlation between participants’ decision-making behavior and
certain socio-psychological factors. The following information will be very helpful for our research. This
information will be strictly confidential.

1. Gender
(a) Male
(b) Female

2. Ethnic Background
(a) White
(b) Asian / Asian American
(c) African American
(d) Hispanic
(e) Native American
if it is other, please specify:

3. Age
4. How many siblings do you have?
5. Grad/Year

(a) Freshman
(b) Sophomore
(c) Junior
(d) Senior
(e) > 4 years
(f) Graduate student

6. Major
7. From which countries did your family originate?
8. Would you describe yourself as (Please choose one)

(a) Optimistic
(b) Pessimistic
(c) Neither

9. Which of the following emotions did you experience during the experiment? (You may choose any
number of them.)
(a) Anger
(b) Anxiety
(c) Confusion
(d) Contentment
(e) Fatigue
(f) Happiness
(g) Irritation
(h) Mood swings
(i) Withdrawal

10. In general, do you see yourself as someone who is willing, even eager, to take risks? (1-7 likert scale)
11. Concerning just personal finance decisions, do you see yourself as someone who is willing, even

eager, to take risks?
12. In general, do you see yourself as someone who, when faced with an uncertain situation, worries a lot

about possible losses?
13. Concerning just personal finance decisions, are you someone who, when faced with an uncertain

situation, worries a lot about possible losses?
14. In general, how competitive do you think you are?
15. Concerning just sports and leisure activities, how competitive do you think you are?

How much do you agree with the following statements? (1-7 likert scale)
I see myself as someone who

16. is helpful and unselfish with others
17. can be cold and aloof
18. is considerate and kind to almost everyone
19. likes to cooperate with others
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20. is often on bad terms with others
21. feels little concern for others
22. is on good terms with nearly everyone
23. can make my own decisions, uninfluenced by public opinion.
24. It is achievement, rather than popularity with others, that gets you ahead nowadays.
25. I will stick to my opinion if I think I am right, even if others disagree.
26. I will change the opinion I express as a result of an onslaught of criticism, even though I really do not

change the way I feel.
27. The important thing in being successful nowadays is not how hard you work, but how well you fit in

with the crowd.
28. I am more likely to express my opinion in a group when I see others agree with me.
29. In a given round, you have 125 tokens in your deposit account and you lose 25 of them after partic-

ipating in the auction. How much money do you think you win or lose? I.e. given that you have 125
tokens in your deposit account already, do you consider it a loss if you end the auction with fewer
than your original 125 tokens, or only if you lose the entirety of your endowment?
(a) I lost 25; I consider ending the auction with any amount less than the original 125 tokens in my

personal account to be a loss.
(b) I won 100 tokens; I only consider the auction’s outcome a loss if I lose the entirety of my 125-

token endowment.
30. If you chose to enter the early bidding stage in any round, please write down the reason (sequential

all-pay treatments only)
31. If you chose to enter the late bidding stage in any round, please write down the reason (sequential

all-pay treatments only)
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Testing Mixed Strategies in Simultaneous All-Pay Auctions

Following Wooders (2010), we categorize homogeneous bidders’ bids in simultaneous all-pay auctions on
[0, 100] into two categories: (1) [0,50]: representing low bids and (2) (50,100]: representing high bids. 50
is the expected average bid under the Nash equilibrium predictions. Table 6 shows the bidding counts for
each category and the corresponding randomized binomial test results for homogeneous bidders.18 With a
null hypothesis that the probability for a bidder to choose a bid of less than 50 is 0.5, we find more rejection
numbers than expected for each treatment.19 Specifically, the null hypothesis that bidders choose low bids
with probability 0.5 is rejected at the 5% level for 21 out of 36 bidders in exogenous-entry treatments, 22
rejections in ETB treatments, and 24 in LTB treatments.20

To test the joint null hypothesis that all bidders in each treatment are equally likely to bid between
these two different bidding categories, we examine the empirical distribution of the 36 p-values for the
low bids from random binomial tests in each treatment. Under the null hypothesis that bidders choose low
bids with probability 0.5, the p-value should be uniformly distributed in [0,1] for each treatment. The left
column of Figure 11 presents the empirical CDF of p-values in each treatment. The Kolmogorov-Smirnov
(KS) test shows that none of these distributions is uniform (p < 0.01).

Furthermore, we check the serial independence of bids by applying the method outlined in Walker
and Wooders (2001). The null hypothesis is that each bid between low and high is serially independent.
We reject the null hypothesis if there are too many or too few runs.21 Tables 7, 8, and 9 report the data and
results for the serial independence test. F (r) denotes the probability of obtaining r, or few, runs. The null
hypothesis is rejected at the 5% level if F (r) < 0.025 or 1− F (r − 1) < 0.025. In summary, there are
17 out of 36 rejections in exogenous-entry treatments, 14 rejections in ETB treatments, and 17 rejections
in LTB treatments. In particular, these rejections occur because there are too few runs, F (r) < 0.025,
indicating that bidders keep over or underbidding. In addition, to test the joint null hypothesis that bidders
are serially independent in each treatment, we construct a statistic ti by randomly drawing a number from
the uniform distribution U[F(r-1),F(r)]. A particular realization of this statistic is given in the right column
of Tables 7, 8, and 9. Under the null hypothesis of serial independence, ti is uniformly distributed in
[0,1]. The right column of Figure 11 presents the empirical CDF of the realized values in each treatment.
Kolmogorov-Smirnov (KS) tests show that these distributions are not uniform (p < 0.01).

For high-cost and low-cost bidders, we apply the same technique to examine whether individuals
play a mixed strategy as predicted by a risk-neutral model. We categorize individual bids on [0, 100] into
two categories. As the average bid predicted by the Nash equilibrium for high (low)-cost bidders is 40
(50), we use 40 as the cutoff for high-cost bidders and 50 for low-cost bidders. Tables 10 and 14 show
bidding counts for each category and the corresponding randomized binomial test result for each bidder.
For high-cost bidders, the null hypothesis that bidders choose low bids with probability 0.52 is rejected at
the 5% level for 16 out of 36 bidders in exogenous-entry treatments,22 12 bidders in the ETB treatments,
and 12 bidders in LTB treatments. For low-cost bidders, the null hypothesis that bidders choose low bids
with probability 0.5 is rejected at the 5% level for 18 out of 36 bidders in exogenous-entry treatments,
9 bidders in the ETB treatments, and 10 bidders in the LTB treatments. The Kolmogorov-Smirnov (KS)
test also rejects the joint null hypothesis that high(low)-cost bidders in each treatment bid low bids with
probability 0.52 (0.5). Figures 12 and 13 (left column) present the empirical CDF of p-values for high-
and low-cost bidders in each treatment. In addition, regarding serial independence, for high-cost bidders,
there are 8 rejections in exogenous-entry treatments, 12 rejections in ETB treatments, and 12 rejections in
LTB treatments. For low-cost bidders, there are 15 rejections in exogenous-entry treatments, 6 rejections
in ETB treatments, and 6 rejections in LTB treatments. Tables 11, 12, 13, 15, 16, and 17 report the data
and results for the test of serial independence. Kolmogorov-Smirnov (KS) tests also reject the joint null
hypothesis that bidders are serially independent in each treatment. Figures 12 and 13 (right column) present

18 As bids above 100 are not predicted by the NE and an expected probability of each type of bid is
required in a binomial test, we exclude this category in our binomial tests. The proportion of bids above
100 is 4% for homogeneous bidders, 12% for high-cost bidders and 25% for low-cost bidders.

19 The expected rejection number is 1.8 bidders (36× 5% = 1.8).
20 As the probability that bidders choose high bids is also 0.5, we obtain identical numbers of rejections

for high bids.
21 A run is a maximal string of consecutive identical symbols, either all low bids or high bids. For

example, the bidding sequence s={L,L,H,L} has three runs.
22 There is a mass point at bid 0 with probability 0.2 for high-cost bidders.
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the empirical CDF of the realized values of ti in each treatment for both high- and low-cost bidders and
they are significantly different from uniform distributions (p < 0.01).
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Figure 11: Randomized Binomial Tests and Runs Tests in Simultaneous All-Pay Auc-
tions for Homogeneous Bidders
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Figure 12: Randomized Binomial Tests and Runs Tests in Simultaneous All-Pay Auc-
tions for High-Cost Bidders
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Figure 13: Randomized Binomial Tests and Runs Tests in Simultaneous All-Pay Auc-
tions for Low-Cost Bidders
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Table 6: Bids for Homogeneous Bidders in Simultaneous All-Pay Auctions

Treatment Exogenous-Entry Endogenous-Entry- Endogenous-Entry-
ETB LTB

Session Subject [0,50] (50,100] [0,50] (50,100] [0,50] (50,100]
1 1 7** 23** 13 15 24** 4**

2 20 9** 13 14 18 12
3 14 7 23 ** 6 ** 30 ** 0 **
4 0** 30** 10 19 29 ** 1 **
5 20 10 26 ** 1 ** 24 ** 6 **
6 23** 7** 23 ** 5 ** 16 12
7 21** 7** 28 ** 1 ** 7 ** 23 **
8 2** 28** 12 15 23 ** 6 **
9 18 10 13 14 9 17

10 26** 4** 24 ** 4 ** 20 ** 5 **
11 24** 0** 16 9 30 ** 0 **
12 26** 4** 3 ** 25 ** 29 ** 1 **

2 1 7** 18** 8 ** 19 ** 14 12
2 13 17 21 ** 8 ** 21 ** 8 **
3 18 10 8 12 12 15
4 3** 16** 21 ** 4 ** 19 10
5 29** 1** 23 ** 5 ** 22 ** 7 **
6 16 11 12 16 3 ** 24 **
7 22** 7** 19 ** 8 6 ** 21 **
8 3** 27** 5 ** 17 ** 21 ** 9 **
9 10 10 12 15 1 ** 15 **

10 13 17 8 ** 18 ** 4 ** 25 **
11 16 12 1 ** 20 ** 13 15
12 5** 25** 12 10 19 11

3 1 29** 1** 4 ** 23 ** 24 ** 5**
2 9 15 17 7 3** 26**
3 15 15 11 10 4 ** 25**
4 8 18** 3 ** 24 ** 21 ** 8 **
5 21** 9** 0 ** 24 ** 19 9
6 29** 1** 3 ** 0 19 10
7 3** 17** 5** 16 ** 24** 1**
8 18 12 24** 0** 7** 20**
9 11 19 9** 1** 7** 21**

10 0** 21** 23** 0** 5** 23**
11 23** 5** 10 12 15 14
12 25** 5** 7 15 11 18
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Table 7: Runs Tests for Homogeneous Bidders in Exogenous-Entry Treatments

Session Subject [0,50] (50,100] Runs F(r-1) F(r) U[F(r-1),F(r)]
1 1 7 23 6 0.001 0.004** 0.002

2 20 9 8 0.005 0.016** 0.010
3 14 7 4 0.000 0.002** 0.001
4 0 30 1 0.000 1** 0.993
5 20 10 10 0.022 0.055 0.038
6 23 7 8 0.018 0.048 0.034
7 21 7 12 0.482 0.639 0.591
8 2 28 2 0.000 0.005** 0.004
9 18 10 15 0.536 0.661 0.569

10 26 4 7 0.108 0.371 0.310
11 24 0 1 0.000 1** 0.421
12 26 4 2 0.000 0.000** 0.000

2 1 7 18 1 0.363 0.393 0.375
2 13 17 19 0.632 0.608 0.621
3 18 10 12 0.139 0.258 0.156
4 3 16 3 0.002 0.020** 0.007
5 29 1 2 0.000 0.067 0.035
6 16 11 11 0.076 0.124 0.114
7 22 7 11 0.259 0.459 0.456
8 3 27 5 0.033 0.2 0.196
9 10 10 13 0.673 0.731 0.676

10 13 17 7 0.000 0.001** 0.001
11 16 12 6 0.000 0.000** 0.000
12 5 25 5 0.002 0.010** 0.002

3 1 29 1 3 0.067 1 0.536
2 9 15 6 0.001 0.005** 0.004
3 15 15 14 0.123 0.24 0.172
4 8 18 8 0.017 0.047 0.037
5 21 9 4 0.000 0.000** 0.000
6 29 1 3 0.067 1 0.109
7 3 17 6 0.298 0.509 0.427
8 18 12 10 0.011 0.029 0.019
9 11 19 3 0.000 0.000** 0.000

10 0 21 1 0.000 1** 0.763
11 23 5 5 0.002 0.013** 0.002
12 25 5 5 0.002 0.010** 0.002
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Table 8: Runs Tests for Homogeneous Bidders in ETB Treatments

Session Subject [0,50] (50,100] Runs F(r-1) F(r) U[F(r-1),F(r)]
1 1 13 15 12 0.064 0.149 0.065

2 13 14 8 0.002 0.009** 0.006
3 23 6 5 0.001 0.003** 0.003
4 10 19 9 0.010 0.028 0.015
5 26 1 3 0.000 0.926 0.588
6 23 5 3 0.000 0.000** 0.000
7 28 1 3 0.069 1 0.548
8 12 15 5 0.000 0.000** 0.000
9 13 14 13 0.189 0.248 0.238

10 24 4 6 0.049 0.123 0.090
11 16 9 5 0.000 0.214 0.024
12 3 25 5 0.038 0.214 0.135

2 1 8 19 13 0.388 0.415 0.411
2 21 8 9 0.028 0.077 0.075
3 8 12 8 0.067 0.159 0.082
4 21 4 9 0.617 1 1.000
5 23 5 2 0.000 0.000** 0.000
6 12 16 14 0.206 0.358 0.349
7 19 8 11 0.197 0.334 0.300
8 5 17 9 0.398 0.696 0.410
9 12 15 6 0.000 0.001** 0.000

10 8 18 7 0.005 0.017** 0.008
11 1 20 3 0.095 1 0.887
12 12 10 10 0.142 0.271 0.168

3 1 4 23 2 0.000 0.000** 0.000
2 17 7 11 0.397 0.591 0.531
3 11 10 13 0.606 0.681 0.660
4 3 24 7 0.395 1 0.828
5 0 24 1 0.000 1** 0.607
6 3 0 1 0.000 1** 0.000
7 5 16 4 0.001 0.007** 0.003
8 24 0 1 0.000 1** 0.521
9 9 1 2 0.000 0.2 0.008

10 23 0 1 0.000 1** 0.546
11 10 12 10 0.142 0.271 0.231
12 7 15 6 0.006 0.022** 0.015
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Table 9: Runs Tests for Homogeneous Bidders in LTB Treatments

Session Subject [0,50] (50,100] Runs F(r-1) F(r) U[F(r-1),F(r)]
1 1 24 4 9 0.568 1 0.871

2 18 12 4 0.000 0.000** 0.000
3 30 0 1 0.000 1** 0.914
4 29 1 2 0.000 0.067 0.041
5 24 6 2 0.000 0.000** 0.000
6 16 12 8 0.002 0.007** 0.005
7 7 23 5 0.000 0.001** 0.001
8 23 6 7 0.013 0.05 0.031
9 9 17 5 0.000 0.001** 0.000

10 20 5 8 0.179 0.325 0.257
11 30 0 1 0.000 1** 0.921
12 29 1 3 0.067 1 0.873

2 1 14 12 11 0.085 0.129 0.104
2 21 8 7 0.002 0.009** 0.002
3 12 15 9 0.010 0.026 0.024
4 19 10 8 0.003 0.010** 0.003
5 22 7 9 0.055 0.144 0.132
6 3 24 6 0.222 0.395 0.343
7 6 21 10 0.322 0.486 0.406
8 21 9 11 0.085 0.161 0.092
9 1 15 3 0.125 1 0.446

10 4 25 4 0.001 0.007** 0.002
11 13 15 6 0.000 0.000** 0.000
12 19 11 3 0.000 0.000** 0.000

3 1 24 5 8 0.135 0.254 0.178
2 3 26 7 0.371 1 0.503
3 4 25 2 0.000 0.000** 0.000
4 21 8 6 0.000 0.002** 0.001
5 19 9 6 0.000 0.002** 0.001
6 19 10 13 0.228 0.345 0.315
7 24 1 3 0.080 1 0.728
8 7 20 5 0.000 0.002** 0.000
9 7 21 11 0.281 0.306 0.294

10 5 23 10 0.583 0.732 0.590
11 15 14 12 0.048 0.114 0.061
12 11 18 6 0.000 0.000** 0.000



40 Tracy Xiao Liu

Table 10: Bids for High-Cost Bidders in Simultaneous All-Pay Auctions

Treatment Exogenous-Entry Endogenous-Entry- Endogenous-Entry-
ETB LTB

Session Subject [0,40] (40,100] [0,40] (40,100] [0,40] (40,100]
1 1 4 0** 4 4 3 8

2 10** 2** 12** 0** 12 5
3 6 6 7 6 3 5
4 7 13 4 5 8 4
5 8 7 9 3 4 3
6 3 6 12** 2** 5 3
7 11** 0** 14** 4** 11** 0**
8 4 5 9** 0** 8 2
9 14** 3** 12 4 7 3

10 14** 1** 9 5 0** 13**
11 8 5 10 7 6 5
12 4 4 14** 5 10 4

2 1 2** 10** 12 5 12** 1**
2 8 8 12** 0** 10 3
3 11** 1** 6 5 9 4
4 12** 3** 2 3 5 5
5 11 5 2 3 3 5
6 0** 11** 10** 1** 8 9
7 5 9 1 0 0** 13**
8 9 8 4 1 1** 12**
9 10 6 6 3 14** 3**

10 6 8 9** 0** 6 3
11 13** 1** 9** 0** 5 9
12 4 8 3** 12** 1** 8**

3 1 1** 9** 1 1 5 5
2 4 11 9 3 7 3
3 3** 12** 1 5 3 3
4 14** 1** 13** 2** 10 4
5 1** 14** 11 4 15** 2**
6 1 3 7 3 11** 2**
7 10 8 2 6 0** 14**
8 6 6 10 4 19** 0**
9 11** 2** 8 8 4 5

10 7 5 6 6 1 5**
11 12** 1** 8 4 6 3
12 18** 0** 17** 0** 12** 3**
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Table 11: Runs Tests for High-Cost Bidders in Exogenous-Entry Treatments

Session Subject [0,40] (40,100] Runs F(r-1) F(r) U[F(r-1),F(r)]
1 1 4 0 1 0.000 1** 0.614

2 10 2 4 0.182 0.455 0.401
3 6 6 3 0.002 0.013** 0.006
4 7 13 5 0.002 0.010** 0.008
5 8 7 6 0.051 0.149 0.137
6 3 6 5 0.345 0.643 0.469
7 11 0 1 0.000 1** 0.290
8 4 5 4 0.071 0.262 0.117
9 14 3 2 0.000 0.003** 0.001

10 14 1 2 0.000 0.133 0.130
11 8 5 8 0.576 0.793 0.602
12 4 4 2 0.000 0.029 0.005

2 1 2 10 4 0.182 0.455 0.185
2 8 8 6 0.032 0.100 0.060
3 11 1 2 0.000 0.167 0.044
4 12 3 4 0.033 0.130 0.082
5 11 5 5 0.022 0.077 0.068
6 0 11 1 0.000 1** 0.421
7 5 9 3 0.001 0.007** 0.005
8 9 8 9 0.319 0.500 0.404
9 10 6 5 0.013 0.047 0.026

10 6 8 9 0.646 0.821 0.764
11 13 1 2 0.000 0.143 0.001
12 4 8 5 0.109 0.279 0.246

3 1 1 9 3 0.200 1.000 0.961
2 4 11 6 0.176 0.374 0.319
3 3 12 4 0.033 0.130 0.082
4 14 1 3 0.133 1.000 0.214
5 1 14 2 0.000 0.133 0.073
6 1 3 2 0.000 0.500 0.461
7 10 8 8 0.117 0.251 0.156
8 6 6 6 0.175 0.392 0.348
9 11 2 4 0.167 0.423 0.308

10 7 5 6 0.197 0.424 0.421
11 12 1 2 0.000 0.154 0.073
12 18 0 1 0.000 1** 0.109
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Table 12: Runs Tests for High-Cost Bidders in ETB Treatments

Session Subject [0,40] (40,100] Runs F(r-1) F(r) U[F(r-1),F(r)]
1 1 4 4 4 0.114 0.371 0.192

2 12 0 1 0.000 1** 0.142
3 7 6 8 0.500 0.733 0.584
4 4 5 3 0.016 0.071 0.037
5 9 3 2 0.000 0.009** 0.002
6 12 2 4 0.154 0.396 0.184
7 14 4 5 0.031 0.121 0.058
8 9 0 1 0.000 1** 0.193
9 12 4 9 0.819 1 0.933

10 9 5 10 0.902 0.972 0.967
11 10 7 9 0.355 0.549 0.468
12 14 5 8 0.299 0.496 0.488

2 1 12 5 3 0.000 0.003** 0.002
2 12 0 1 0.000 1** 0.579
3 6 5 6 0.262 0.522 0.304
4 2 3 2 0.000 0.2 0.028
5 2 3 4 0.500 0.9 0.520
6 10 1 2 0.000 0.182 0.153
7 1 0 1 0.000 1** 0.866
8 4 1 2 0.000 0.4 0.193
9 6 3 4 0.107 0.345 0.115

10 9 0 1 0.000 1** 0.686
11 9 0 1 0.000 1** 0.960
12 3 12 3 0.004 0.033 0.017

3 1 1 1 2 0.000 1 0.381
2 9 3 2 0.000 0.009** 0.009
3 1 5 2 0.000 0.333 0.217
4 13 2 3 0.019 0.143 0.042
5 11 4 6 0.176 0.374 0.365
6 7 3 3 0.017 0.083 0.056
7 2 6 5 0.643 1 0.949
8 10 4 4 0.014 0.068 0.066
9 8 8 6 0.032 0.1 0.065

10 6 6 3 0.002 0.013** 0.008
11 8 4 3 0.004 0.024** 0.016
12 17 0 1 0.000 1** 0.954
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Table 13: Runs Tests for High-Cost Bidders in LTB Treatments

Session Subject [0,40] (40,100] Runs F(r-1) F(r) U[F(r-1),F(r)]
1 1 3 8 6 0.533 0.788 0.637

2 12 5 4 0.003 0.017** 0.015
3 3 5 5 0.429 0.714 0.696
4 8 4 6 0.279 0.533 0.519
5 4 3 2 0.000 0.057 0.046
6 5 3 4 0.143 0.429 0.195
7 11 0 1 0.000 1** 0.901
8 8 2 5 0.533 1 0.688
9 7 3 4 0.083 0.283 0.190

10 0 13 1 0.000 1** 0.127
11 6 5 6 0.262 0.522 0.423
12 10 4 2 0.000 0.002** 0.000

2 1 12 1 3 0.154 1 0.437
2 10 3 2 0.000 0.007** 0.004
3 9 4 2 0.000 0.003** 0.002
4 5 5 4 0.040 0.167 0.054
5 3 5 5 0.429 0.714 0.585
6 8 9 4 0.001 0.005** 0.005
7 0 13 1 0.000 1** 0.588
8 1 12 2 0.000 0.154 0.001
9 14 3 6 0.350 0.579 0.535

10 6 3 3 0.024 0.107 0.071
11 5 9 4 0.007 0.039 0.028
12 1 8 2 0.000 0.222 0.191

3 1 5 5 3 0.008 0.04 0.039
2 7 3 4 0.083 0.283 0.270
3 3 3 4 0.300 0.7 0.554
4 10 4 2 0.000 0.002** 0.002
5 15 2 2 0.000 0.015** 0.000
6 11 2 2 0.000 0.026 0.001
7 0 14 1 0.000 1** 0.367
8 19 0 1 0.000 1** 0.694
9 4 5 6 0.500 0.786 0.706

10 1 5 3 0.333 1 0.998
11 6 3 5 0.345 0.643 0.375
12 12 3 4 0.033 0.13 0.050
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Table 14: Bids for Low-Cost Bidders in Simultaneous All-Pay Auctions

Treatment Exogenous-Entry Endogenous-Entry- Endogenous-Entry-
ETB LTB

Session Subject [0,50] (50,100] [0,50] (50,100] [0,50] (50,100]
1 1 7** 0** bids > 100 2** 9**

2 1 3 4 12 4 3
3 7 9 8 7 1 7
4 2 5 8 8 3 6
5 4 10 7 9 3 3
6 15** 1** 5 8 14** 3**
7 14** 0** 3 7 5 10
8 8 2** 2 6 3 4
9 13** 0** 4 5 1 5

10 12** 0** 5 7 0 3**
11 10 6 8 5 3 4
12 0 1 4 5 7 6

2 1 12** 4** 1 1 11** 1**
2 0** 6** 1 0 4 4
3 4 9 2** 7 3** 12**
4 13** 2** 2 3 3 3
5 7 7 1 2 3 4
6 6 8 5 3 5 2
7 6 9 3 1 2 4
8 1** 12** 9 2 13** 0**
9 12** 2** 11 3 7 2

10 1** 12** 6 3 7 13
11 3** 10 8** 1** 10 3**
12 4 5 9** 0** 1 2

3 1 7 4 4 7 8 5
2 0** 13** 11** 3** 1 2
3 2 2 0** 7** 1** 14**
4 2** 13** 11** 2** 14** 1**
5 1** 13** 4 9 4 2
6 0** 15** 7 3 0** 6**
7 7 5 8 7 0 2**
8 9 9 11** 2** 1 1
9 6 3 5 7 5 1

10 6 4 12** 3** 1 3
11 13** 4** 3 8 19** 0**
12 10** 0** 11** 0** 11** 2**
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Table 15: Runs Tests for Low-Cost Bidders in Exogenous-Entry Treatments

Session Subject [0,50] (50,100] Runs F(r-1) F(r) U[F(r-1),F(r)]
1 1 7 0 1 0.000 1** 0.431

2 1 3 3 0.500 1.000 0.696
3 7 9 3 0.000 0.001** 0.000
4 2 5 3 0.095 0.333 0.102
5 4 10 6 0.203 0.419 0.386
6 15 1 3 0.125 1.000 0.527
7 14 0 1 0.000 1** 0.203
8 8 2 3 0.044 0.222 0.155
9 13 0 1 0.000 1** 0.306

10 12 0 1 0.000 1** 0.288
11 10 6 4 0.002 0.013** 0.004
12 0 1 1 0.000 1** 0.240

2 1 12 4 6 0.154 0.335 0.303
2 0 6 1 0.000 1** 0.623
3 4 9 4 0.018 0.085 0.076
4 13 2 4 0.143 0.371 0.199
5 7 7 5 0.025 0.078 0.035
6 6 8 8 0.413 0.646 0.499
7 6 9 6 0.063 0.175 0.095
8 1 12 2 0.000 0.154 0.112
9 12 2 5 0.396 1.000 0.708

10 1 12 3 0.154 1.000 0.850
11 3 10 2 0.000 0.007** 0.005
12 4 5 5 0.262 0.500 0.319

3 1 7 4 7 0.606 0.833 0.711
2 0 13 1 0.000 1** 0.038
3 2 2 2 0.000 0.333 0.197
4 2 13 2 0.000 0.019** 0.002
5 1 13 2 0.000 0.143 0.074
6 0 15 1 0.000 1** 0.230
7 7 5 2 0.000 0.003** 0.000
8 9 9 6 0.012 0.044 0.018
9 6 3 3 0.024 0.107 0.060

10 6 4 2 0.000 0.010** 0.001
11 13 4 4 0.007 0.037 0.008
12 10 0 1 0.000 1** 0.208



46 Tracy Xiao Liu

Table 16: Runs Tests for Low-Cost Bidders in ETB Treatments

Session Subject [0,50] (50,100] Runs F(r-1) F(r) U[F(r-1),F(r)]
1 1

2 4 12 4 0.009 0.045 0.025
3 8 7 7 0.149 0.296 0.295
4 8 8 6 0.032 0.1 0.096
5 7 9 2 0.000 0.000** 0.000
6 5 8 3 0.002 0.010** 0.003
7 3 7 4 0.083 0.283 0.212
8 2 6 3 0.071 0.286 0.204
9 4 5 5 0.262 0.5 0.496

10 5 7 7 0.424 0.652 0.576
11 8 5 6 0.152 0.347 0.156
12 4 5 4 0.071 0.262 0.204

2 1 1 1 2 0.000 1 0.604
2 1 0 1 0.000 1** 0.670
3 2 7 3 0.056 0.25 0.113
4 2 3 2 0.000 0.2 0.051
5 1 2 3 0.667 1 0.758
6 5 3 5 0.429 0.714 0.711
7 3 1 2 0.000 0.5 0.325
8 9 2 2 0.000 0.036 0.023
9 11 3 5 0.148 0.423 0.345

10 6 3 4 0.107 0.345 0.200
11 8 1 2 0.000 0.222 0.085
12 9 0 1 0.000 1** 0.062

3 1 4 7 4 0.033 0.142 0.119
2 11 3 5 0.148 0.423 0.287
3 0 7 1 0.000 1** 0.640
4 11 2 5 0.423 1 0.430
5 4 9 6 0.236 0.471 0.284
6 7 3 5 0.283 0.583 0.370
7 8 7 6 0.051 0.149 0.101
8 11 2 2 0.000 0.026 0.020
9 5 7 5 0.076 0.197 0.077

10 12 3 6 0.396 0.637 0.407
11 3 8 5 0.236 0.533 0.421
12 11 0 1 0.000 1** 0.086
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Table 17: Runs Tests for Low-Cost Bidders in LTB Treatments

Session Subject [0,50] (50,100] Runs F(r-1) F(r) U[F(r-1),F(r)]
1 1 2 9 2 0.000 0.036 0.008

2 4 3 2 0.000 0.057 0.016
3 1 7 3 0.250 1.000 0.456
4 3 6 4 0.107 0.345 0.133
5 3 3 4 0.300 0.700 0.527
6 14 3 5 0.101 0.350 0.345
7 5 10 4 0.005 0.029 0.026
8 3 4 5 0.543 0.800 0.791
9 1 5 2 0.000 0.333 0.237

10 0 3 1 0.000 1** 0.856
11 3 4 4 0.200 0.543 0.308
12 7 6 7 0.296 0.500 0.500

2 1 11 1 3 0.167 1.000 0.419
2 4 4 2 0.000 0.029 0.010
3 3 12 4 0.033 0.130 0.124
4 3 3 2 0.000 0.100 0.049
5 3 4 4 0.200 0.543 0.529
6 5 2 3 0.095 0.333 0.129
7 2 4 4 0.400 0.800 0.713
8 13 0 1 0.000 1** 0.872
9 7 2 3 0.056 0.250 0.233

10 7 13 2 0.000 0.000** 0.000
11 10 3 4 0.045 0.171 0.090
12 1 2 3 0.667 1.000 0.869

3 1 8 5 5 0.054 0.152 0.109
2 1 2 2 0.000 0.667 0.479
3 1 14 3 0.133 1.000 0.416
4 14 1 2 0.000 0.133 0.111
5 4 2 4 0.400 0.800 0.425
6 0 6 1 0.000 1** 0.809
7 0 2 1 0.000 1** 0.094
8 1 1 2 0.000 1.000 0.161
9 5 1 2 0.000 0.333 0.215

10 1 3 3 0.500 1.000 0.918
11 19 0 1 0.000 1** 0.809
12 11 2 3 0.026 0.167 0.133
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